碳青霉烯类耐药鲍曼不动杆菌(CRAB)作为21世纪最具挑战性公共卫生问题之一,得到了全世界的广泛关注,是新型抗生素研发首要攻克病原菌[1,2]。CRAB作为院内感染的头号病原菌,以其在医院环境中广泛存在、逃避宿主免疫系统及获得新的抗生素耐药机制等而臭名昭著,因此评估和管理被隔离患者的CRAB感染情况成为临床医生面临的最大难题[3]。首先,很难直观的区分急性感染患者与上呼吸道定植的危重患者,尤其是患有严重免疫缺陷和其他高危因素的患者,因此往往是在临床诊断不明确的时候开始针对CRAB的经验性治疗[4];其次,大多数CRAB感染表现为肺炎,在CRAB高度流行的地区,不能采用快速分子检测方法检测从呼吸道标本中分离的CRAB,这导致了CRAB肺炎的治疗延迟,进而引起不良的后果[5];第三,CRAB肺炎需要优化抗菌药物给药剂量,以实现肺泡上皮细胞衬液(ELF)和肺实质内的药代动力学-药效学(PK/PD)靶值,且许多体外具有抗CRAB活性的抗菌药物,因在肺组织的渗透能力差和剂量依赖性毒副作用而受到限制(表1);第四,CRAB感染相关的生物膜形成通常与耐药表型和毒力增强有关[6],这强调了清除被CRAB污染的留置装置的重要性[7];最关键的是针对CRAB分离株的抗菌药物敏感折点没有被确立,且在CLSI和EUCAST的敏感折点存在差异[8-10]。
全球各个国家对CRAB的分离率在30%-80%之间,其中亚洲、东欧和拉丁美洲的分离率最高[11-13] 。CRAB的耐药机制较为复杂,包括固有和获得性β-内酰胺酶、外排泵上调、外膜通透性降低和抗生素靶点改变等[2,12,14] 。研究发现,CRAB通常与编码苯唑西林酶(OXA)(OXA -23和OXA-24/40)的基因水平转移有关,且碳青霉烯耐药率和潜在的耐药机制均具有地理特异性,但随着时间的推移CRAB的主要克隆株也会随之发生变化[11,15-17] 。令人担忧的是,研究人员发现全球CRAB分离株对氨苄西林-舒巴坦和粘菌素等关键抗生素的耐药率正在增加,所以研发治疗CRAB感染的新药及制定有效的治疗方案刻不容缓[16,18] 。我们将治疗CRAB的抗生素按体外活性高低进行排序,包括多粘菌素(粘菌素,多粘菌素B),四环素(依拉环素,米诺环素,替加环素)和β-内酰胺类(氨苄西林-舒巴坦,碳青霉烯类)[12,19] 。此外,新研发的新型β-内酰胺类抗生素,如头孢地尔和舒巴坦-度洛巴坦,对不同CRAB分离株均表现较强的体外活性,但是两者的敏感折点各不相同且尚未被建立[12,14,20,21] 。以上药物的用药特点及药物副作用见(表1)。
事实上,美国传染病学会(IDSA)抗生素耐药(AMR)治疗指南和欧洲临床微生物学和传染病学会(ESCMID)抗生素耐药治疗指南,都建议对严重的CRAB感染的患者进行至少两种体外活性药物的联合治疗[22,23] 。支持这种联合治疗的依据来自各种抗生素组合在体外的协同效应及其抑制CRAB进一步耐药的可能机制,但这些依据并不能说明体外联合治疗的疗效在体内同样适用[24] 。本文旨在围绕关于侵袭性CRAB感染管理和治疗方面的关键问题,进而提出最全面且最有效的抗生素联合使用方案,而并非一直沿用粘菌素加磷霉素、粘菌素加利福平和以氨基糖苷为主等不能改善患者预后的治疗方案[25-27] 。
1、粘菌素联合美罗培南可否用于治疗CRAB感染?
众所周知粘菌素的毒副作用较大,临床上依然可见粘菌素联合美罗培南用于治疗CRAB感染的方案,因其在治疗广泛的CRAB分离株的体外活性较高且能发挥较强的体外协同作用[28,29]。并且发现这种协同作用是通过粘菌素作用于细菌的细胞膜,使其去极化后增强对碳青霉烯类的摄取活性,允许更多的碳青霉烯类抗生素进入细胞周质间隙并有效地作用于抗生素靶点。但近来在两项大型的临床试验研究中发现,联合治疗的疗效并没有优于单用粘菌素。在其中一组试验中,198例患者接受粘菌素单药治疗和208例接受粘菌素联合美罗培南治疗,其临床治疗失败率分别为83%(125/151) 和81% (130/161),28天死亡率分别为46%(70/151)和52(84/161),差异并无统计学意义[30,31]。另一入组423例病患,分析其临床治疗失败比例分别为43%和37%,28天死亡率分别为70%和64%,差异同样不具有统计学意义[32,33]。
以上两组数据表明,粘菌素和碳青霉烯类在治疗侵袭性CRAB感染的体外协同比率高,但在实际临床治疗中这种联合用药并无意义。那么该如何较好地利用粘菌素治疗CRAB感染仍然是个难题,一种方法是使用3药组合,包括氨苄西林-舒巴坦、碳青霉烯类和粘菌素。从机制上讲,粘菌素可能促进氨苄西林-舒巴坦和碳青霉烯类药物的摄取,使两者与青霉素结合蛋白(分别为PBP1/3和PBP2)结合成饱和状态。从时间杀伤效率表明,与单药或2种药物联合相比,3药联合能更快速有效地杀灭病原菌[34] 。此外还发现粘菌素的衍生体—多粘菌素B比前体药物粘菌素更快、更可靠地达到稳态浓度,且神经毒性和肾毒性的副作用较小[35,36] 。因此优化氨苄西林-舒巴坦、多粘菌素B和美罗培南的给药剂量,患者的死亡率明显降低,且能抑制病原菌的耐药发生[34,37] 。但2023年IDSA AMR指南并不提倡使用碳青霉烯类抗生素作为治疗CRAB感染的联合制剂[22] 。
2、舒巴坦治疗CRAB的用药方案
舒巴坦主要作为β-内酰胺酶抑制剂,作用于细菌所产生的β-内酰胺酶,防止酶水解头孢菌素或青霉素类抗生素,通常与β-内酰胺类抗生素组成复方制剂。同时,舒巴坦本身也可以作用于不动杆菌属青霉素结合蛋白PBP1a, PBP1b和PBP3,发挥抗菌作用。复方制剂氨苄西林-舒巴坦抗CRAB的活性取决于其合成比例(2g氨苄西林和1g舒巴坦,2:1)中舒巴坦的量能否达到抗菌的PD靶浓度。例如,在小鼠感染模型中,血清游离舒巴坦浓度高于最低抑菌浓度的时间即fT>MIC是治疗成功的关键因素[38,39]。当患者的肌酐清除率在90至120ml/min,舒巴坦的MIC<4mg /L,治疗目标浓度要达到60% fT>MIC,那么舒巴坦的剂量需要达到1g/6h或2g/8h,持续灌注4h,其治疗效能才能达到90%以上[40]。
有相关研究数据表明,当CRAB分离株对氨苄西林-舒巴坦的药敏结果为敏感(S)或者中介(I),可以优化氨苄西林-舒巴坦的剂量为3g q4h;耐药R(MIC≥16 mg/L)时,优化舒巴坦的剂量为9g /day[39,41] ,即氨苄西林-舒巴坦9g q8h,持续灌注4h,或27g 24h连续灌注[22] 。近20年来,支持剂量优化的氨苄西林-舒巴坦治疗CRAB感染的证据越来越多,研究人员采用meta分析方法综合比较各试验组中患者临床改善情况、治愈率、死亡率和病原菌的杀灭,发现与其他治疗方案相比,3-8 g/d和高剂量(≥9 g/d)的舒巴坦单药治疗能最高程度的降低CRAB感染患者的死亡率[41-45] 。然而根据CLSI的标准,大部分CRAB临床分离株对氨苄西林-舒巴坦的体外敏感性差,以至于临床医生不会将其作为治疗CRAB的首选药物,这也是目前缺乏氨苄西林-舒巴坦治疗CRAB疗效评估的原因[13] 。同时还发现当折点为MIC≤8/4 mg/L(对应舒巴坦MIC≤4 mg/L),少于5%的CRAB分离株对氨苄西林-舒巴坦是敏感[13] ;舒巴坦的折点提高到≤8mg/L或者≤16mg/L,只有少于50%的CRAB分离株对氨苄西林-舒巴坦是敏感[40] 。因此高剂量氨苄西林-舒巴坦(定义为至少9 g/d的舒巴坦给药方案)至少应与1种体外有活性的药物联用;当舒巴坦MICs未知或≥16 mg/L时,可选用2种体外有活性的药物联用[46] 。
3、四环素类抗生素治疗侵袭性CRAB的用药方案
四环素类抗生素的单一或联合疗法用于治疗CRAB感染的样本量少、非标准化的给药方案及临床感染类型的多样性,导致相关回顾性研究结果存在差异。但近来已有替加环素(TGC)抗CRAB感染的相关临床数据,研究发现与其他抗CRAB感染的治疗方案相比:TGC单药治疗可能导致更高的死亡率,特别是在菌血症或肺炎的情况下[44,47-49];TGC作为联合治疗的基础,与多粘菌素和舒巴坦联用,能达到较高的临床治愈率[50-51];与标准剂量相比,较高剂量的TGC(首次剂量200 mg,后续100 mg q12h)与其他体外活性抗生素联用,可以较好地改善患者的预后[52,53]。此外,我们还需考虑TGC在呼吸道、血清和泌尿道中的药物暴露浓度有限以及受非线性血浆蛋白结合的影响[54,55]。并且无论是CLSI或EUCAST都没有关于TGC治疗不动杆菌属的临床药敏折点,然而临床上常常错误地将TGC对肠杆菌科的敏感折点(美国食品药品监督管理局FDA定义的MIC≤2mg/L)作为治疗不动杆菌属的药敏折点依据,导致抗感染的失败。事实上,当TGC MIC≤1mg/L治疗危重病人时,使用标准剂量输注,其PK/PD目标靶值(fAUC:MIC)才能达到90%以上;MIC≥2mg/L时,则需要至少100 mg q12h才能达到相同的靶点[55]。尤其是针对血流感染或者肺炎的患者,当TGC的MIC≤0.5mg/L,加大给药剂量,才能在患者的血清或者ELF达到有效的PK/PD靶浓度[54]。总之,治疗CRAB感染的重症患者,需要选用大剂量并MIC≤1mg/L 的TGC联合其他体外有活性的抗生素,才能达到较高的临床治愈率和较好的预后[22,23]。
与TGC相比,临床上选用米诺环素(MH)治疗CRAB的案例更少。相关报道采用回顾性分析发现,MH MIC≤1mg/L时,200 mg q12h静脉滴注的给药方案,其PK/PD的目标靶值(fAUC:MIC)仅能达到90%;只有MIC≤0.5 mg/L时,治疗CRAB感染的1-log kill的PK/PD靶点才能达到90%以上[56]。因此,MIC值较低且在特殊的感染部位药物暴露浓度能达到PK/PD靶值时,认为MH可以替代TGC作为联合治疗CRAB感染的最佳四环素类抗生素[13,57],但目前尚未有MH治疗CRAB感染的最佳给药剂量[58]。近来发现,在米诺环素基础上通过化学基团修饰后得到的半合成化合物——奥马环素(Omadacycline),是一种新型9-氨甲基环素类药物,属于四环素类抗生素的一员,但目前还未有治疗侵袭性CRAB的临床相关报道[59,60]。此外依拉环素(Eravacycline)作为一种新型的含氟四环素类抗生素,相关研究监测中发现其MIC值较TGC和MH低,但在治疗侵袭性CRAB感染同样没有临床药敏折点[61,62],所以推荐使用依拉环素单药或者联合治疗CRAB感染的用药方案,需要被进一步的研究。
总之,四环素类抗生素在治疗CRAB感染方面存在一些优势,如:MH作为四环素类口服制剂,在体外对CRAB具有可靠的活性,同时在非侵袭性感染中,具有口服降阶治疗的优势[59,60];其次,四环素类通常具有较好地穿透软组织、骨骼和生物膜的活性,为骨关节或假体置换感染,提供了合适的治疗选择[46,63,64];此外,与其他抗生素相比,四环素类可以降低艰难梭菌的感染风险[65],因此在艰难梭菌感染风险高的患者中,可以首选以四环素类为主的联合用药;最后,这类药物比基于多粘菌素为基础的联合用药方案,具有更小的肾毒性[46]。
4、头孢地尔治疗CRAB感染的用药指南
头孢地尔作为新研发的一种β-内酰胺类抗生素,在临床上能够发挥有效的治疗碳青霉烯类耐药病原菌感染的作用,同时也被期许能作为治疗CRAB感染的首选药物[66]。近来对头孢地尔的监测数据表明,当MIC≤4 mg/L时,对CRAB表现普遍高敏感性[19,67,68],但其在体外的活性并未在临床治疗CRAB感染的疗效中凸显[67,69]。为了准确评估头孢地尔治疗CRAB感染的疗效,研究者们通过逆概率加权法(IPTW)弱化临床样本的选择偏差性和实验设计的局限性,得出单用头孢地尔抗感染的失败率高于单用粘菌素[70],单用头孢地尔的抗感染失败率高于联合治疗,更容易发生头孢地尔耐药[71,72]。事实上,临床上头孢地尔治疗CRAB感染的耐药情况已有报道[72-74]。研究发现,在抗生素体外药敏试验中,各种药物与头孢地尔联用时显示出较高的协同作用[68,75,76]。如在小鼠的大腿感染模型中,头孢地尔与氨苄西林-舒巴坦、头孢他啶-阿维巴坦或美罗培南联合,用于治疗CRAB分离株的杀菌效果优于单用头孢地尔,并且头孢地尔联合氨苄西林-舒巴坦或头孢他啶-阿维巴坦可以有效的阻止头孢地尔耐药情况的发生[70,77]。头孢地尔PK/PD研究中,发现头孢地尔的MIC≤2mg /L时,在ELF中实现PK/PD靶目标(fT>MIC)的概率很高[78]。值得注意的是,头孢地尔治疗CRAB的fT>MIC靶值(88% )显著高于治疗其他碳青霉烯类耐药病原菌的fT>MIC(≤70% )[79]。综上所述,由于头孢地尔治疗CRAB感染存在的体外活性、安全性以及联合治疗潜在的有利条件,可将其作为联合用药的重要组成成分,但不支持单药治疗[70,71];在所有使用头孢地尔治疗的患者中,强烈建议密切观察其耐药性[72];CLSI、EUCAST和FDA定义的头孢地尔药敏折点各不相同[66],在临床实践中确定准确且有效的药敏折点成为一个重大且迫切的挑战。
5、治疗CRAB感染的用药新方案
目前FDA批准的新型β-内酰胺酶抑制剂(阿维巴坦、瑞莱巴坦或法硼巴坦)均不可有效地抑制OXA碳青霉烯酶活性。度洛巴坦(未被FDA批准)是新一代二氮杂环辛酮(DBO) β-内酰胺酶抑制剂,不仅可抑制D类OXA碳青霉烯酶,同样对A类和C类丝氨酸酶都有强有效的抑制活性[80]。研究发现将度洛巴坦与舒巴坦联合时,可以增强舒巴坦对抗CRAB的活性[13]。针对全球分离的2570株CRAB菌株,舒巴坦-度洛巴坦的MIC50和MIC90分别为1mg/L和4mg/L[13]。这些体外试验数据给临床提供了安全用药依据,即舒巴坦-度洛巴坦联合用药剂量为:1g舒巴坦和1g度洛巴坦,q6h 持续输注3h[81];舒巴坦-度洛巴坦MIC≤4mg/L时,所有被检测菌株的治疗结果达标率超过90%,且得出舒巴坦和度洛巴坦在ELF的渗透率,分别占总药物浓度的53%和37%[82]。另一组关于舒巴坦-度洛巴坦联合亚胺培南-西司他丁与粘菌素联合亚胺培南-西司他丁的比较中发现,舒巴坦-度洛巴坦组的临床治愈率明显高于粘菌素组(62%vs40%),死亡率(19%vs32%)和肾毒性(13%vs38%)均明显低于粘菌素组[83]。未来的研究还需要确定亚胺培南-西司他丁是否对舒巴坦-度洛巴坦在治疗CRAB感染方面有协同效应。虽然针对舒巴坦-度洛巴坦的完整性研究结果尚未发表,且度洛巴坦还未经FDA批准上市,但它会成为未来治疗侵袭性CRAB感染的最新突破点[84,85]。
6、侵袭性CRAB感染的辅助疗法
为了更有效的治疗侵袭性CRAB感染,临床上应用了几种辅助疗法,包括吸入雾化抗生素、噬菌体和单克隆抗体的使用,但因为缺乏有效的数据支持,这些辅助方法的疗效并未可知[22,23]。针对感染CRAB的肺炎患者,吸入雾化氨基糖苷类药物和粘菌素可以减少负荷菌量,虽然尚未显示可显著改善临床结局,但却有益于包括结构性肺组织病的慢性感染者的后续抗感染治疗[86,87]。例如,给上呼吸道定植的肺移植患者,雾化吸入治疗CRAB的预防性抗生素[88]。未来我们还可以使用振动网喷雾器吸入雾化粘菌素并联合使用静脉注射其他抗生素,来观察评估治疗侵袭性CRAB感染的疗效[89]。增强机体对CRAB的固有免疫是克服CRAB感染的一种新疗法,为此近来研究发现几种单克隆抗体(MAbs)[90-92],包括MAb 8和MAb 65两种已被证实可以提高存活率的小鼠感染模型[91,92]。然而,两种单抗组合只能覆盖不到50%的CRAB筛选分离株,这表明未来的免疫治疗需要将多种单抗组合成单一鸡尾酒疗法,以有效对抗不同的分离菌株。此外,我们还发现噬菌体在侵袭性CRAB抗感染治疗中发挥的作用令人瞩目,然而缺乏广泛的试验数据进行论证[93-95]。
7、侵袭性CRAB感染的首选治疗方案
近20年来,临床医生在很大程度上依赖经验用药来指导CRAB感染的治疗。近来几项关于治疗CRAB感染的随机临床试验分析、同时期的PK/PD研究及新型抗生素的研发,都将有助于指导临床医生对CRAB感染治疗的选择[22,23,46]。虽然以往的用药方案依然在被沿用,但我们同时也在寻找更多更有效的治疗CRAB感染的新方案,包括保留多粘菌素有效治疗的联合用药方案[46];优化舒巴坦剂量达到9g/d,来促进其治疗不动杆菌属的活性;头孢地尔作为治疗CRAB感染的药物联合制剂具有较好的耐受性,建议因感染组织部位的不同而制定不同的临床敏感折点[70];临床上治疗CRAB感染,疗效最为显著的是舒巴坦-度洛巴坦复方制剂,不仅能降低CRAB感染的死亡率,减低药物的毒副作用,同时还提高患者的临床治愈率[83]。
总之,CRAB感染的治疗应围绕以舒巴坦为主的联合用药方案,可以联用强效β-内酰胺酶抑制剂度洛巴坦(如果获批FDA),或与1种或多种体外活性抗生素联合使用[22] 。再者强调确定体外活性不应仅仅依赖敏感折点,而应是进一步了解抗菌药物PK/PD靶点和感染部位药物暴露情况。例如,根据目前CLSI定义米诺环素的折点MIC≤4mg/L即为敏感,但事实上当MIC>1mg/L时,其感染部位的抗生素浓度已无法达到治疗浓度[56] 。考虑到这些因素,我们需要结合药敏试验结果、感染部位和对当地流行病学的调查结果,制定个性化的治疗方案。
治疗侵袭性CRAB感染的一线首选药物因组织不同而异,首选方案包括大剂量氨苄西林-舒巴坦联合头孢地尔、多粘菌素B或替加环素,并根据PK/PD模型优化的剂量、药敏试验的结果和感染部位进行区分[22,23,46] 。例如, 治疗CRAB相关肺炎,首选氨苄西林-舒巴坦联合替加环素或头孢地尔;CRAB相关血流感染,首选氨苄西林-舒巴坦联合头孢地尔或多粘菌素B;CRAB相关骨关节感染,首选氨苄西林-舒巴坦联合替加环素;其他部位的感染也同样适用,包括腹腔感染,可选用氨苄西林-舒巴坦联合替加环素或头孢地尔;尿路感染可选用氨苄西林-舒巴坦联合粘菌素。如以上治疗方案无效或者患者复发感染CRAB,目前暂不建议联合使用第三种抗生素。无论选择何种治疗方案,均需要及时控制感染源并密切监测患者的临床反应和药物的毒副作用。研究指明,针对侵袭性CRAB感染的患者,在没有其他单一疗法或特定的联合治疗药物问世前,舒巴坦-度洛巴坦(如能获批FDA)可能是作为联合治疗的最佳选择。
表一(点击图片放大查看)
参考文献 (可上下滑动浏览)
[1] Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18(3):318–27.
[2] Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51(10):3471–84.
[3] Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B.Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 2017; 30(1):409–47.
[4] Bartal C, Rolston KVI, Nesher L. Carbapenem-resistant Acinetobacter baumannii: colonization, infection and current treatment options. Infect Dis Ther 2022;11(2):683–94.
[5] Huang ST, Chiang MC, Kuo SC, et al. Risk factors and clinical outcomes of patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J Microbiol Immunol Infect 2012; 45(5):356–62.
[6] Bardbari AM, Arabestani MR, Karami M, Keramat F, Alikhani MY, Bagheri KP.Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microb Pathog 2017; 108:122–8.
[7] Burnham JP, Rojek RP, Kollef MH. Catheter removal and outcomes of multidrug-resistant central-line-associated bloodstream infection. Medicine(Baltimore) 2018; 97(42):e12782.
[8] Pogue JM, Jones RN, Bradley JS, et al. Polymyxin susceptibility testing and interpretive breakpoints: recommendations from the United States Committee on Antimicrobial Susceptibility Testing(USCAST). Antimicrob Agents Chemother 2020; 64(2):e01495-19.
[9] Clinical and Laboratory Standards Institute. M100: Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed. Wayne, PA: Clinical and Laboratory Standards Institute, 2022.
[10] European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 13.0, 2023. Available a t: http://www.eucast.org. Accessed 11 May 2022.
[11] Seifert H, Blondeau J, Lucassen K, Utt EA. Global update on the in vitro activity of tigecycline and comparators against isolates of Acinetobacter baumannii and rates of resistant phenotypes (2016-2018). J Glob Antimicrob Resist 2022; 31:82–9.
[12] O’Donnell JN, Putra V, Lodise TP. Treatment of patients with serious infections due to carbapenem-resistant Acinetobacter baumannii: how viable are the current options? Pharmacotherapy 2021; 41(9):762–80.
[13] Karlowsky JA, Hackel MA, McLeod SM, Miller AA. In vitro activity of sulbactam-durlobactam against global isolates of Acinetobacter baumanniicalcoaceticus complex collected from 2016 to 2021. Antimicrob Agents Chemother 2022; 66(9):e0078122.
[14] Abdul-Mutakabbir JC, Griffith NC, Shields RK, Tverdek FP, Escobar ZK.Contemporary perspective on the treatment of Acinetobacter baumannii infections: insights from the Society of Infectious Diseases pharmacists. Infect Dis Ther 2021; 10(4):2177–202.
[15] Hujer AM, Hujer KM, Leonard DA, et al. A comprehensive and contemporary “snapshot” of beta-lactamases in carbapenem resistant Acinetobacter baumannii. Diagn Microbiol Infect Dis 2021; 99(2):115242.
[16] Iovleva A, Mustapha MM, Griffith MP, et al. Carbapenem-resistant Acinetobacter baumannii in U.S. Hospitals: diversification of circulating lineages and antimicrobial resistance. mBio 2022; 13(2):e0275921.
[17] Adams MD, Wright MS, Karichu JK, et al. Rapid replacement of Acinetobacter baumannii strains accompanied by changes in lipooligosaccharide loci and resistance gene repertoire. mBio 2019; 10(2):e003356-19
[18] Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012; 67(7):1607–15.
[19] Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of gram-negative bacilli collected
worldwide in 2014 to 2016. Antimicrob Agents Chemother 2018; 62(2):e01968-17.
[20] Butler DA, Biagi M, Tan X, Qasmieh S, Bulman ZP, Wenzler E. Multidrug resistant Acinetobacter baumannii: resistance by any other name would still be hard to treat. Curr Infect Dis Rep 2019; 21(12):46.
[21] Viehman JA, Nguyen MH, Doi Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2014;74(12):1315–33.
[22] Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ.Infectious Diseases Society of America guidance on the treatment of AmpC beta-lactamase-producing Enterobacterales,carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin Infect Dis 2022; 74(12):2089–114.
[23] Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant gram-negative bacilli (endorsed by European Society of Intensive Care Medicine). Clin Microbiol Infect 2022; 28(4):521–47.
[24] Sirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother 2014; 58(9):5598–601.
[25] Park HJ, Cho JH, Kim HJ, Han SH, Jeong SH, Byun MK. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: a randomised controlled trial. J Glob Antimicrob Resist 2019; 17:66–71.
[26] Durante-Mangoni E, Signoriello G, Andini R, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 2013; 57(3):349–58.
[27] Aydemir H, Akduman D, Piskin N, et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect 2013; 141(6):1214–22.
[28] Qureshi ZA, Hittle LE, O’Hara JA, et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis 2015; 60(9):1295–303.
[29] Oleksiuk LM, Nguyen MH, Press EG, et al. In vitro responses of Acinetobacter baumannii to two- and three-drug combinations following exposure to colistin and doripenem. Antimicrob Agents Chemother 2014; 58(2):1195–9.
[30] Paul M, Daikos GL, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant gram-negative bacteria: an open-label, randomised controlled trial. Lancet
Infect Dis 2018; 18(4):391–400.
[31] Kaye KS, Marchaim D, Thamlikitkul V, et al. Results from the OVERCOME trial: colistin monotherapy versus combination therapy for the treatment of pneumonoia or bloodstream infection due to extensively drug resistant gram-negative bacilli. Abstract #04773. Presented at: 31st ECC MID (virtual).2021.
[32] Nutman A, Lellouche J, Temkin E, et al. Colistin plus meropenem for carbapenem-resistant gram-negative infections: in vitro synergism is not associated with better clinical outcomes. Clin Microbiol Infect 2020; 26(9):1185–91
[33] Pogue JM, Rybak MJ, Stamper K, et al. The impact of in vitro synergy between colistin and meropenem on clinical outcomes in invasive carbapenem-resistant gram-negative infections: a report from the OVERCOME trial. Abstract #638.Presented at: IDWeek 2021 (Virtual Event, Sept. 29–Oct. 3).
[34] Lenhard JR, Smith NM, Bulman ZP, et al. High-dose ampicillin-sulbactam combinations combat polymyxin-resistant Acinetobacter baumannii in a hollowfiber infection model. Antimicrob Agents Chemother 2017; 61(3).
[35] Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clin Infect Dis 2014; 59(1):88–94.
[36] Tsuji BT, Pogue JM, Zavascki AP, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of
Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019; 39(1):10–39.
[37] Heil EL, Claeys KC, Kline EG, et al. Utility of three-drug combinations for the treatment of carbapenem-resistant Acinetobacter baumannii infections among COVID-19 patients. Presented at: European Congress of Clinical Microbiology and Infectious Diseases (ECCMID; Lisbon, Portugal; 2022.
[38] Yokoyama Y, Matsumoto K, Ikawa K, et al. Pharmacokinetic/pharmacodynamic evaluation of sulbactam against Acinetobacter baumannii in in vitro and murine thigh and lung infection models. Int J Antimicrob Agents 2014; 43(6): 547–52
[39] Abouelhassan Y, Kuti JL, Nicolau DP, Abdelraouf K. Sulbactam against Acinetobacter baumannii pneumonia: pharmacokinetic/pharmacodynamic appraisal of current dosing regimens. Presented at: IDWeek 2022(Washington, DC, Oct. 11–15).
[40] Jaruratanasirikul S, Nitchot W, Wongpoowarak W, Samaeng M,Nawakitrangsan M. Population pharmacokinetics and Monte Carlo simulations of sulbactam to optimize dosage regimens in patients with ventilator-associated pneumonia caused by Acinetobacter baumannii. Eur J Pharm Sci 2019; 136:104940.
[41] Betrosian AP, Frantzeskaki F, Xanthaki A, Georgiadis G. High-dose ampicillin-sulbactam as an alternative treatment of late-onset VAP from multidrug-resistant Acinetobacter baumannii. Scand J Infect Dis 2007; 39(1): 38–43.
[42] Mosaed R, Haghighi M, Kouchak M, et al. Interim study: comparison of safety and efficacy of levofloxacin plus colistin regimen with levofloxacin plus high dose ampicillin/sulbactam infusion in treatment of ventilator-associated pneumonia due to multi drug resistant Acinetobacter. Iran J Pharm Res 2018; 17-(Suppl 2):206–13.
[43] Kengkla K, Kongpakwattana K, Saokaew S, Apisarnthanarak A, Chaiyakunapruk N. Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: a systematic review and network metaanalysis. J Antimicrob Chemother 2018; 73(1):22–32.
[44] Jung SY, Lee SH, Lee SY, et al. Antimicrobials for the treatment of drug-resistant Acinetobacter baumannii pneumonia in critically ill patients: a systemic review and Bayesian network meta-analysis. Crit Care 2017; 21(1):319.
[45] Liu J, Shu Y, Zhu F, et al. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: a systematic review and network meta-analysis. J Glob Antimicrob Resist 2021; 24:136–47.
[46] Abdul-Mutakabbir JC, Griffith NC, Shields RK, Tverdek FP, Escobar ZK.Contemporary perspective on the treatment of Acinetobacter baumannii infections: insights from the Society of Infectious Diseases pharmacists. Infect Dis Ther 2021; 10(4):2177–202.
[47] Liou BH, Lee YT, Kuo SC, Liu PY, Fung CP. Efficacy of tigecycline for secondary Acinetobacter bacteremia and factors associated with treatment failure. Antimicrob Agents Chemother 2015; 59(6):3637–40.
[48] Niu T, Luo Q, Li Y, Zhou Y, Yu W, Xiao Y. Comparison of tigecycline or cefoperazone/sulbactam therapy for bloodstream infection due to carbapenemresistant Acinetobacter baumannii. Antimicrob Resist Infect Control 2019; 8:52.
[49] Liang CA, Lin YC, Lu PL, Chen HC, Chang HL, Sheu CC. Antibiotic strategies and clinical outcomes in critically ill patients with pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Clin Microbiol Infect 2018; 24(8):908, e1-e7
[50]Cheng A, Chuang YC, Sun HY, et al. Excess mortality associated with colistintigecycline compared with colistin-carbapenem combination therapy for extensively drug-resistant Acinetobacter baumannii bacteremia: a multicenter prospective observational study. Crit Care Med 2015; 43(6):1194–204
[51]Cai X, Yang Z, Dai J, et al. Pharmacodynamics of tigecycline alone and in combination with colistin against clinical isolates of multidrug-resistant Acinetobacter baumannii in an in vitro pharmacodynamic model. Int J Antimicrob Agents 2017; 49(5):609–16.
[52] Zha L, Pan L, Guo J, French N, Villanueva EV, Tefsen B. Effectiveness and safety of high dose tigecycline for the treatment of severe infections: a systematic review and meta-analysis. Adv Ther 2020; 37(3):1049–64.
[53] De Pascale G, Montini L, Pennisi M, et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit Care 2014; 18(3):R90.
[54] De Pascale G, Lisi L, Ciotti GMP, et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann Intensive Care 2020; 10(1):94.
[55] Xie J, Roberts JA, Alobaid AS, et al. Population pharmacokinetics of tigecycline in critically ill patients with severe infections. Antimicrob Agents Chemother 2017; 61(8):e00345-17.
[56] Lodise TP, Van Wart S, Sund ZM, et al. Pharmacokinetic and pharmacodynamic profiling of minocycline for injection following a single infusion in critically ill adults in a phase iv open-label multicenter study (ACUMIN). Antimicrob Agents Chemother 2021;65(3):e01809-20.
[57] Flamm RK, Shortridge D, Castanheira M, Sader HS, Pfaller MA. In vitro activity of minocycline against U.S. isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus species complex,Stenotrophomonas maltophilia, and Burkholderia cepacia complex: results from the SENTRY Antimicrobial Surveillance Program, 2014 to 2018. Antimicrob Agents Chemother 2019; 63(11):e01154-19.
[58] Beganovic M, Daffinee KE, Luther MK, LaPlante KL. Minocycline alone and in combination with polymyxin B, meropenem, and sulbactam against carbapenem-susceptible and -resistant Acinetobacter baumannii in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2021; 65(3):e01680-20.
[59] Noel AR, Attwood M, Bowker KE, MacGowan AP. In vitro pharmacodynamics of omadacycline against Escherichia coli and Acinetobacter baumannii. J Antimicrob Chemother 2021; 76(3):667–70.
[60] Pfaller MA, Huband MD, Shortridge D, Flamm RK. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: report from the SENTRY Antimicrobial Surveillance Program, 2016 to 2018. Antimicrob Agents Chemother 2020; 64(5):e02488-19.
[61] Morrissey I, Olesky M, Hawser S, et al. In vitro activity of eravacycline against gram-negative bacilli isolated in clinical laboratories worldwide from 2013 to 2017. Antimicrob Agents Chemother 2020; 64(3):e01699-19.
[62] Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60(6):3840–4.
[63] Beganovic M, Luther MK, Daffinee KE, LaPlante KL. Biofilm prevention concentrations (BPC) of minocycline compared to polymyxin B, meropenem, and amikacin against Acinetobacter baumannii. Diagn Microbiol Infect Dis 2019; 94(3):223–6.
[64] Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 2006; 58(2):256–65.
[65] Tariq R, Cho J, Kapoor S, et al. Low risk of primary Clostridium difficile infection with tetracyclines: a systematic review and metaanalysis. Clin Infect Dis 2018;66(4):514–22.
[66] McCreary EK, Heil EL, Tamma PD. New perspectives on antimicrobial agents:cefiderocol. Antimicrob Agents Chemother 2021; 65(8):e0217120.
[67] Yamano Y. In Vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin Infect Dis 2019; 69(Suppl 7):S544–S51.
[68] Abdul-Mutakabbir JC, Nguyen L, Maassen PT, et al. In vitro antibacterial activity of cefiderocol against multidrug-resistant Acinetobacter baumannii.Antimicrob Agents Chemother 2021; 65(9):e0264620.
[69] Shields RK. Case commentary: the need for cefiderocol is clear, but are the supporting clinical data? Antimicrob Agents Chemother 2020; 64(4): e00059-20.
[70] Falcone M, Tiseo G, Leonildi A, et al. Cefiderocol- compared to colistin-based regimens for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2022; 66(5):e0214221.
[71] Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenemresistant gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis 2021; 21(2):226–40.
[72] Smoke SM, Brophy A, Reveron S, et al. Evolution and transmission of cefiderocol-resistant Acinetobacter baumannii during an outbreak in the burn intensive care unit. Clin Infect Dis 2023; 76(3):e1261-1265
[73] Malik S, Kaminski M, Landman D, Quale J. Cefiderocol resistance in Acinetobacter baumannii: Roles of beta-lactamases, siderophore receptors, and penicillin binding protein 3. Antimicrob Agents Chemother 2020; 64(11):e01221-20.
[74] Poirel L, Sadek M, Nordmann P. Contribution of PER-type and NDM-type beta-lactamases to cefiderocol resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2021; 65(10):e0087721.
[75] Biagi M, Vialichka A, Jurkovic M, et al. Activity of cefiderocol alone and in combination with levofloxacin, minocycline, polymyxin B, or trimethoprimsulfamethoxazole against multidrug-resistant Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2020; 64(9):e00559-20.
[76] Kobic E, Abouelhassan Y, Singaravelu K, Nicolau DP. Pharmacokinetic analysis and in vitro synergy evaluation of cefiderocol, sulbactam, and tigecycline in an extensively drug-resistant Acinetobacter baumannii pneumonia patient receiving continuous venovenous hemodiafiltration. Open Forum Infect Dis 2022;9(10):ofac484.
[77] Gill CM, Santini D, Takemura M, et al. In vivo efficacy and resistance prevention of cefiderocol in combination with ceftazidime/avibactam, meropenem, or ampicillin/sulbactam human simulating regimens using a 72-hour murine thigh in
fection model. Abstract #609. Presented at: IDWeek; Washington, DC; 2022(Oct. 11–15).
[78] Kawaguchi N, Katsube T, Echols R, Wajima T, Nicolau DP. Intrapulmonary pharmacokinetic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, in patients with pneumonia and healthy subjects. J Clin Pharmacol 2022; 62(5):670–80.
[79] Nakamura R, Ito-Horiyama T, Takemura M, et al. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob Agents Chemother 2019; 63(9):e02031-18.
[80] Durand-Reville TF, Guler S, Comita-Prevoir J, et al. ETX2514 is a broad-spectrum beta-lactamase inhibitor for the treatment of drug-resistant gram-negative bacteria including Acinetobacter baumannii. Nat Microbiol 2017; 2:17104.
[81] Shapiro AB, Moussa SH, McLeod SM, Durand-Reville T, Miller AA.Durlobactam, a new diazabicyclooctane beta-lactamase inhibitor for the treatment of acinetobacter infections in combination with sulbactam. Front Microbiol 2021; 12:709974.
[82] Bhavnani SM, Rubino CM, Hammel JP, et al. Population pharmacokinetics, pharmacodynamic/pharmacokinetic attainment and clinical pharmacokinetic/pharmacodynamic analyses for sulbactam-durlobactam to support dose selection for the treatment of Acinetobacter baumannii-calcoaceticus infections.Abstract LB2306. Presented at: IDWeek 2022 (Washington, DC; Oct 11–15).
[83] Altarac D, Isaacs R, Srinivasan S, et al. Efficacy and safety of sulbactam-durlobactam (SUL-DUR) versus colistin therpay in patients with Acinetobacter baumannii-calcoaceticus complex (ABC) infections: a global, randomised, active-controlled phase 3 trial (ATTACK). Abstract O2060. Presented at: 32nd ECCMID; Lisbon, Portugal; 2022, April 23–26.
[84] Holger DJ, Kunz Coyne AJ, Zhao JJ, Sandhu A, Salimnia H, Rybak MJ. Novel combination therapy for extensively drug-resistant Acinetobacter baumannii necrotizing pneumonia complicated by empyema: a case report. Open Forum
Infect Dis 2022; 9(4):ofac092.
[85] Zaidan N, Hornak JP, Reynoso D. Extensively drug-resistant Acinetobacter baumannii nosocomial pneumonia successfully treated with a novel antibiotic combination. Antimicrob Agents Chemother 2021; 65(11):e0092421.
[86] Vardakas KZ, Voulgaris GL, Samonis G, Falagas ME. Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: a systematic review and meta-analysis. Int J Antimicrob Agents 2018; 51(1):1–9.
[87] Niederman MS, Alder J, Bassetti M, et al. Inhaled amikacin adjunctive to intravenous standard-of-care antibiotics in mechanically ventilated patients with gram-negative pneumonia (INHALE): a double-blind, randomised,placebo-controlled, phase 3, superiority trial. Lancet Infect Dis 2020; 20(3):330–40.
[88] Kalil AC, Metersky ML, Klompas M, et al. Executive summary: management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and
the American Thoracic Society. Clin Infect Dis 2016; 63(5):575–82.
[89] Rouby JJ, Zhu Y, Torres A, Rello J, Monsel A. Aerosolized polymyxins for ventilator-associated pneumonia caused by extensive drug resistant gram-negative bacteria: class, dose and manner should remain the trifecta. Ann Intensive Care 2022; 12(1): 97.
[90] Yeganeh O, Shabani M, Pakzad P, Mosaffa N, Hashemi A. Evaluation the reactivity of a peptide-based monoclonal antibody derived from OmpA with drug resistant pulsotypes of Acinetobacter baumannii as a potential therapeutic approach. Ann Clin Microbiol Antimicrob 2022; 21(1):30.
[91] Nielsen TB, Yan J, Slarve M, et al. Monoclonal antibody therapy against Acinetobacter baumannii. Infect Immun 2021; 89(10):e0016221
[92] Nielsen TB, Pantapalangkoor P, Luna BM, et al. Monoclonal antibody protects against Acinetobacter baumannii infection by enhancing bacterial clearance and evading sepsis. J Infect Dis 2017; 216(4):489–501.
[93] Schooley RT, Biswas B, Gill JJ, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother
2017; 61(10):e00954-17.
[94] Jault P, Leclerc T, Jennes S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa(PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 2019; 19(1):35–45.
[95] Leitner L, Ujmajuridze A, Chanishvili N, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis 2021; 21(3):427–36.
摘译自Clinical Infectious Diseases.2023:76 (Suppl 2) 《Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacterbaumannii-calcoaceticus Complex Infections》
译者简介
徐巧丽
医学硕士,临床抗感染与免疫方向。福建省漳州市医院检验科主管技师 ,从事临床微生物检验工作多年,目前在北京大学人民医院检验科微生物组进修。
编译:徐巧丽(福建省漳州市医院);审校:陈宏斌(北京大学人民医院)
本文转载自订阅号「京港感染论坛」
* 文章仅供医疗卫生相关从业者阅读参考
本文完
责编:Jerry